U c“AN nIGnRH Department of Computer Science

CHANDIGARH
NIVERSITY

University Institute of Engineering

DEPARTMENT OF COMPUTER SCIENCE
& ENGINEERING

Bachelor of Engineering

Subject Name: System Programming
Subject Code: CST-315

|DISCOVER . LEARN . EMPOWE

Assemblers

Department of computer Science

5 Chapter-1.2
Assemblers

CHANDIGARH
UNIVERSITY

Types of Assemblers
Two-Pass Assemblers
One-Pass Assemblers

i

e Assembler

* The basic principles of assembler operation are simple, involving just
one problem, that of unresolved references.

* This is a simple problem that has two simple solutions.

* The problem is important, however, since its two solutions introduce,
in a natural way, the two main types of assemblers namely, the one-
pass and the two-pass.

- |

CHANDIGARH
UNIVERSITY

Pass ,
Location counter

indicator
\ Error |
b — T~

roc. B
Source line Main A ™
buffer Program —
- oy Object /
code P
assembly
area
Lexical scan |/
routine Table search procedures
()])CO(l(? Directive ;’r'mbol
table table table

The main components of Assembler and operations

s

e Assembler

Assembler divide these tasks in two passes:

* Pass-1:

e Define symbols and literals and remember them in symbol table and literal
table respectively.

* Keep track of location counter
* Process pseudo-operations

* Pass-2:

* Generate object code by converting symbolic op-code into respective
numeric op-code

* Generate data for literals and look for values of symbols

One-pass assembler

* The operation of a one-pass assembler is different.
* As its name implies, this assembler reads the source file once.

* During that single pass, the assembler handles both label definitions
and assembly.

* The only problem is future symbols.

i

st Two pass Assembler

* Such an assembler performs two passes over the source file.

* In the first pass it reads the entire source file, looking only for label
definitions.

e All labels are collected, assigned values, and placed in the symbol
table in this pass.

* No instructions are assembled and, at the end of the pass, the symbol
table should contain all the labels defined in the program.

*In the second pass, the instructions are again read and are
assembled, using the symbol table

2

i Example

* Firstly, We will take a small assembly language program to
understand the working in their respective passes.

* Assembly language statement format:

CHANDIGARH

UNNERSITY [Label] [Opcode] [operand]

Example: M ADD R1, ='3'
where, M - Label; ADD - symbolic opcode;

R1 - symbolic register operand; (='3") - Literal

Assembly Program:

Label Op-code operand LC value(Location counter)

JOHN START 200
MOVER R1, ='3' 200
MOVEM R1, X 201
L1 MOVER R2, ='2" 202
LTORG 203
X DS 1 204

END 205

Example

* START: This instruction starts the execution of program from location
200 and label with START provides name for the program.(JOHN is
name for program)

* MOVER: It moves the content of literal(='3’) into register operand R1.
* MOVEM: It moves the content of register into memory operand(X).

* MOVER: It again moves the content of literal(='2') into register
operand R2 and its label is specified as L1.

* LTORG: It assigns address to literals(current LC value).
» DS(Data Space): It assigns a data space of 1 to Symbol X.
* END: It finishes the program execution.

Example

* Working of Pass-1: Define Symbol and literal table with their
addresses.
Note: Literal address is specified by LTORG or END.

e Step-1: START 200 (here no symbol or literal is found so both table
would be empty)

e Step-2: MOVER R1, =’3" 200 (='3’ is a literal so literal table is made)

Example

e Step-3: MOVEM R1, X 201
X is a symbol referred prior to its declaration so it is stored in symbol
table with blank address field.

e Step-4: L1 MOVER R2, =2’ 202
L1 is a label and =2’ is a literal so store them in respective tables

Symbol Address
x . s
L1 202

Literal Address
='3' S
2

12

Example

e Step-5: LTORG 203
Assign address to first literal specified by LC value, i.e., 203

* Step-6: XDS 1204
It is a data declaration statement i.e X is assigned data space of 1. But

X is a symbol which was referred earlier in step 3 and defined in step
6.

* This condition is called Forward Reference Problem where variable is
referred prior to its declaration and can be solved by back-patching.
So now assembler will assign X the address specified by LC value of
current step.

%

C
e Exam P le

* Step-7: END 205

Program finishes execution and remaining literal will get address
specified by LC value of END instruction. Here is the complete symbol

and literal table made by pass 1 of assembler.

X 204

L1 202

Literal Address

='3' 203

=2 205 14

Working of Pass-2:

* Pass-2 of assembler generates machine code by converting symbolic
machine-opcodes into their respective bit configuration(machine

understandable form).

* It stores all machine-opcodes in MOT table (op-code table) with
symbolic code, their length and their bit configuration.

It will also process pseudo-ops and will store them in POT
table(pseudo-op table).

Working of Pass-2:

* Various Data bases required by pass-2:

e 1. MOT table(machine opcode table)

e 2. POT table(pseudo opcode table)

e 3. Base table(storing value of base register)
e 4. LC (location counter)

CcU CL.
=1 Pass Description

Search Pseudo-op
table

Search Machine-op
table

Determine length of
data space and
convert and output
constants

END

Get length., type and
Danary code

Evaluate operands by
searching symbol
table

Assemble the parts
of instruction — Update LC

s

Assembler Working Diagram

 As a whole assembler works as:

= N
'\I /

{

18

Department of computer Science

References

[PDF] Systems Programming and Operating Systems by Dhamdhere
- Free Download PDF (dlscrib.com)

[PDF] Principles of Compiler Design By Alfred V. Aho & J.D.Ullman
Free Download — Learnengineering.in

19

https://dlscrib.com/download/systems-programming-and-operating-systems-by-dhamdhere_59b64cb7dc0d60182f8ceb1f_pdf
https://learnengineering.in/pdf-principles-of-compiler-design-by-alfred-v-aho-j-d-ullman-free-download/

@ANK YOU

