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e Assembler

* The basic principles of assembler operation are simple, involving just
one problem, that of unresolved references.

* This is a simple problem that has two simple solutions.

* The problem is important, however, since its two solutions introduce,
in a natural way, the two main types of assemblers namely, the one-
pass and the two-pass.
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s

e Assembler

Assembler divide these tasks in two passes:

* Pass-1:

e Define symbols and literals and remember them in symbol table and literal
table respectively.

* Keep track of location counter
* Process pseudo-operations

* Pass-2:

* Generate object code by converting symbolic op-code into respective
numeric op-code

* Generate data for literals and look for values of symbols




One-pass assembler

* The operation of a one-pass assembler is different.
* As its name implies, this assembler reads the source file once.

* During that single pass, the assembler handles both label definitions
and assembly.

* The only problem is future symbols.
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st Two pass Assembler

* Such an assembler performs two passes over the source file.

* In the first pass it reads the entire source file, looking only for label
definitions.

e All labels are collected, assigned values, and placed in the symbol
table in this pass.

* No instructions are assembled and, at the end of the pass, the symbol
table should contain all the labels defined in the program.

*In the second pass, the instructions are again read and are
assembled, using the symbol table
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i Example

* Firstly, We will take a small assembly language program to
understand the working in their respective passes.

* Assembly language statement format:




CHANDIGARH

UNNERSITY [Label] [Opcode] [operand]

Example: M ADD R1, ='3'
where, M - Label; ADD - symbolic opcode;

R1 - symbolic register operand; (='3") - Literal

Assembly Program:

Label Op-code operand LC value(Location counter)

JOHN START 200
MOVER R1, ='3' 200
MOVEM R1, X 201
L1 MOVER R2, ='2" 202
LTORG 203
X DS 1 204

END 205




Example

* START: This instruction starts the execution of program from location
200 and label with START provides name for the program.(JOHN is
name for program)

* MOVER: It moves the content of literal(='3’) into register operand R1.
* MOVEM: It moves the content of register into memory operand(X).

* MOVER: It again moves the content of literal(='2') into register
operand R2 and its label is specified as L1.

* LTORG: It assigns address to literals(current LC value).
» DS(Data Space): It assigns a data space of 1 to Symbol X.
* END: It finishes the program execution.




Example

* Working of Pass-1: Define Symbol and literal table with their
addresses.
Note: Literal address is specified by LTORG or END.

e Step-1: START 200 (here no symbol or literal is found so both table
would be empty)

e Step-2: MOVER R1, =’3" 200 ( ='3’ is a literal so literal table is made)




Example

e Step-3: MOVEM R1, X 201
X is a symbol referred prior to its declaration so it is stored in symbol
table with blank address field.

e Step-4: L1 MOVER R2, =2’ 202
L1 is a label and =2’ is a literal so store them in respective tables

Symbol Address
x . s
L1 202

Literal Address
='3' S
2
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Example

e Step-5: LTORG 203
Assign address to first literal specified by LC value, i.e., 203

* Step-6: XDS 1204
It is a data declaration statement i.e X is assigned data space of 1. But

X is a symbol which was referred earlier in step 3 and defined in step
6.

* This condition is called Forward Reference Problem where variable is
referred prior to its declaration and can be solved by back-patching.
So now assembler will assign X the address specified by LC value of
current step.
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* Step-7: END 205

Program finishes execution and remaining literal will get address
specified by LC value of END instruction. Here is the complete symbol

and literal table made by pass 1 of assembler.

X 204

L1 202

Literal Address

='3' 203

=2 205 14




Working of Pass-2:

* Pass-2 of assembler generates machine code by converting symbolic
machine-opcodes into their respective bit configuration(machine

understandable form).

* It stores all machine-opcodes in MOT table (op-code table) with
symbolic code, their length and their bit configuration.

It will also process pseudo-ops and will store them in POT
table(pseudo-op table).




Working of Pass-2:

* Various Data bases required by pass-2:

e 1. MOT table(machine opcode table)

e 2. POT table(pseudo opcode table)

e 3. Base table(storing value of base register)
e 4. LC ( location counter)
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Assembler Working Diagram

 As a whole assembler works as:
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